
IAD-A261 689

DTICJ ELECTE J
MAR 5 1993 fl

"I" UC
i TOWARDS A FORMALISM

FOR PROGRAM GENERATION
i 1992 - FINAL REPORT

I
I
I

I DanLcl E. Cooke

Ulivercity of Tc::Rc El daIn

1992

I
I
I 93-04632

I AFOSR
Air Force Office of Scientific Rel oar'.h

Reproduced From "'. . A 'A
Best Available Copy o f p.TLzr,% ftlecum

..... L U00

S93 3 4 010o



Form' Approved

REPORT DOCUMENTATION PAGE oMB o o7o4.C,88

ouDic e gortl i f cr tm is colectiOm of 'form ator 'S r'ur' e e's:- .-, q) o:'ie , c t'e ', 1c-

q~tmefinq nd maitltalfling the dat4 'eeaea and s~omYoletnrg ara '- :- -- .-. ~ Sjnd :-' ': -. 11 $ '' Cý1 -I! -f ~ S.ie.
calieotion of t iformation. nicluaIng SUggestioni *or re~au..ng ts0,,roer A~j ,t aCd e, - , ,s 1-1". 1- 'S -'~ 1O ý 4,C' 7" ,

D&.I%'gI'Wae uSWte '204 A(Ongton. ~A 22202-4302 4"O1! %13141-1- 1-r - i ~ ' oec'- ll"0c : - ,- - -88) /..V'1,. :,

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3 REPORT TYPE AND DATES COVERED- - 1FINAL/15 JUN 89 TO 29 DEC 92

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

TOWARDS A FORMALISM FOR A PROGP44
GENERATION (U)

6. AUTHOR(S)

2304/FS

Professor Daniel E. Cooke F49620-89 -C-O0 74

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
RFFORT NUMBER

Universitv of Texas
Computer Science Department
El Paso. TX 79968-0518 AFOSR-TR. 3 i 8 3

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING
AGENCY REPORT NUMBER

AFOSR/NM F4962D-89-C-0O74

110 DUNCAN AVE, SUTE B115

BOLLING AFB DC 20332-0001

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION 'AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

13. ABSTRACT (Maximum 200 words)

The following was accomplished ov.'er the period of the contract:

(1) Studied the interaction betwiifeen iterative and data structures; (2) Completed

Denotational Semantics of BagL. I!) [ultiated work on a logical semantic for BagL;

(4) Initiated work on a Visual Interface for BagL; (5) Initiated work on semantic

extensions to support software iiiiitenance in BagL; (6) Initiated a revision of

BagL semantics; and (7) Initiat el ,jr-rk on a BagL interpreter. In the coming years

the researchers hope to completr the BagL interpreter, the logical semantic, and

establish the expressivenessI -):t . In the long term it is hoped to apply

results of nonmonotoni'Z logic r.;eir'h to BagL for the purpose of software

evolution automation. They al,;, -t,'• to develop a visual interface based upon the

formal language.

14, SUBJECT TERMS IS. NUMBER OF PAGES

•.PRI;CE CODE

`17. SECURITY CLASSIFICATION IS SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSTFIED UNCLASSIFIED SAR(SAME AS REPOR )
iN •540-0O.280-5500 -a-a'Oa 3-' Z9B (Rev 2-89'.

0- 'Ic : |'I



TOWARDS A FORMALISM
I FOR PROGRAM GENERATION
| 1992 - FINAL REPORT

I

Prepared by

Daniel E. Cooke

Department of Computer Science
University of Texas El Paso
El Paso, Texas 79968-0518

December 1992

Contract F49620-89-C-0074

I DTIC L.�-7i• USPECT1D I

Acceslon For

NTIS CRA&I
DTIC TAE

Prepared for Uncslflounced E

AFOSR By

Air Force Office of Scientific Research By

Mathematical and Information Sciences Distributlon I
Air Force Office of Scientific Research Availability Codes
Bolling Air Force Base
Washington, D.C. 20332 6448 Avail andIor

Dist SpecialI --_A



REPORT DOCUNM TION 1. REPORT NO. 2. 3. RECIPIENT'S ACCESSION NO.
PAGE

4. Title and Subtitle 5. Report Date

Towards a Formalism for Program Generation 1992 - December, 1992

Final Report 6.

7. Authors 8. Performing Org. Rept. No.

Daniel E. Cooke

9. Performing Organization Name and Address 10. Project/Task/Vorkunit No.

Department of Computer Science
University of Texas El Paso 11. Contract No.
El Paso, Texas 79968-0518 F49620-89-C-0074

12. Sponsoring Organization Name and Address 13. Type of Report & Period
Air Force Office of Scientific Research Covered
Mathematical and Information Sciences Final Report 6/89 - 12/92
Bolling AFB 14.
Washington, D.C. 20332 6448 i4.

15. Supplementary Notes

16. Abstract (Limit: 200 words)

The report which follows is the result of the work
accomplished during a three year contract with the
AFOSR. We have accomplished the following:

1. Studied the interaction between iterative and data structures;
2. Completed Denotational Semantics of BagL;
3. Initiated work on a logical semantic for BagL;
4. Initiated work on a Visual Interface for BagL;
5. Initiated work on semantic extensions to support software maintenance in

BagL;
6. Initiated a revision of BagL semantics; and
7. Initiated work on a BagL interpreter.

In the coming years we hope to complete the BagL
interpreter, the logical semantic, and establish the expressiveness of BagL.
In the long term we hope to apply results of nonmonotonic
logic research to BagL for the purpose of software
evolution automation. We also hope to develop a visual

interface based upon the formal language.

17. Document Analysis a. Descriptors

b. Identlflers/Open-ended Terms

c. COSATI Fleld/Group

18. Availability Statement 19. Security Class (report) 21. No. of Pages

20. Security Class (page) 22. Price



I

NOTICES

This final report is a presentation of the findings from research funded under F49620-89-C-0074.

ABSTRACT
The report which follows is the result of the work accomplished in the second year of a three year

contract with the AFOSR. In the past year we have accomplished the following:

1. A definition of a computational expression in 10;
2. A definition of stratification as applied to requirement specifications;
3. A definition of a synthesis method for computational expressions;
4. A precise understanding of ambiguity, completeness, and consistency with respect to LO;
5. A definition of the property expression;
6. A refinement of L0;
7. A synthesis program for computational expressions; and
8. A goal for an abstraction level for LO.

We hope to complete the definition of LO according to the outlined syntax given in section 2.4. We
intend to develop formal semantics for the language. We request that the AFOSR consider an amendment to
our current contract to allow us to continue our development of this language including proofs of
correctness and proofs to show that the language does not limit the ability to solve problems (i.e., the
proofs we obtained for Li in Cooke90-1).

We believe that ultimately, we can build a workstation around the Sun Sparc Station2 which is
based on the language LO.

I
I
I
I
I
I



TABLE OF CONTENTS
NOTICES ................................... . ........ ............
A B S TR A C T ................................ ................................ . ........................ ... . ..... . . ... .
T A B LE O F C O N T EN T S ................................ ................................ ................................ ...........
FO R EW O R D ................................ ................................ . . ....................... ......... . . ............
PREFACE AND ACKNOWLEDGEMENTS ......................... .................................................... iii

SYMBOLS AND ABBREVIATIONS ............................................ ii
SUM M A RY . ............................................................... . . ......................... ......... ....... 1
1. INTRODUC T ION ................................. ............................. . ......................... . . . . ...... 2
2. METHODS, ASSUMPTIONS, AND PROCEDURES . ......................................................... 3
2.1 An Overview of the Current Version of BagL .......................................................... 3
2.2 Syntax of BagL Terms ............................................... .4
2.3 Semantics of Terms ................................................. 5
2.4 Complete Examples .................................................... 8
3. RESULTS AND DISCUSSION ............................................... 10
3.1 PROJECT PERSONNEL .......................................................... ............................ .......... 10
43.2 RESULTS . ............................ ... ........... . .................................. 10
4. CONCLUSIONS .......... ........................................... 13
5. RECOMMENDATIONS .................................................... . ................................ ..... 13
REFERENCES .. ......................................................... . . . . ....................... ......................... 14

SGLOSSARY ...................................................... ........................... ................ 6..... 1
INDEX ......................... ... ....................... ...... .......................... ............... 17
Appendix A - Statem ent of" W ork......................................................................................... 18~~Appendix B -.. . . . . . . . . . . . . . . 19

I FORE WORD

This is the final report associated with AFOSR contract, F49620-89-C-0074.I
I

I
I
I



iJi

PREFACE AND ACKNOWLEDGEMENTS

Research sponsored by the Air Force Office of Scientific Research (AFSC), under contract F49620-
89-C-0074. The United States Government is authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright notation hereon.

SYMBOLS AND ABBREVIATIONS

UTEP - University of Texas El Paso

1 - Logical NOT
A - Logical AND

V - Logical OR

- rogical IMPLICATION

- Logical EQUIVALENCE or BICONDITIONAL

T - Logical TERM

S- Metasymbol to represent A, V, or 1-
T - Well-formed formula.

V - Atomic formula.

V - Universal Quantifier.

- Existential Quantifier.

Ui - An arbitrary program.

I - An arbitrary program specification.

- "such that".

"d- if" .

4--- "defined in terms of".



SUMMARY.
The goal of this funded effort was to study a representative third generation language, to ascertain

which (if any) language control constructs could be abstracted out of the language in order to achieve a
higher level abstraction for problem solving with computers. The study focused on whether the higher
level language was inherently ambiguous.

In year 1, the study of abstracting out selective and iterative constructs was accomplished. It was
determined that the elimination of the selective structure resulted in a high degree of ambiguity.
Furthermore, it was determined that abstracting out selective structures actually hampered the ability to
solve problems. This work appears in [Cookea9, Cooke90-1, Cooke90-2].

After a very thorough study of iterative structures (based upon the directions established in [Cam,
Lis, Shaw]), it was discovered that given a Turing Computable LISP-like language, ambiguity occurs when
iterative/recursive constructs are eliminated. The resulting ambiguity can be summarized in the following
way. Given that one variable is to be used to produce a result in another variable, and no information is
given as to whether the variables contain atomic or list values, one may be producing any of the following
computations:

1. An atom from an atom (e.g., x := y+10);
2. An atom from a list (e.g., computing the sum or product of a list);
3. A list from an atom (e.g., computing Fibonacci sequence from two atomic seeds); or
4. A list from a list (e.g., producing a sorted list from an unsorted list).

The details concerning this study can be found in [Cooke90-3, Cookegl-l, Cooke9l-2, Cooke9l-3,
Cooke91-4, Cooke92-1, Gates9O, Gates92, and Cooke92-2].

In order to avoid the ambiguities revealed in the year one studies, the high level language, BagL was
developed. This language has a single, basic data structure which can be configured into any imaginable
structure. This basic data structure (or metastructure) is to be used to represent a display, report,
database, response to a realtime event, etc. The language allows the specifier to describe the basis of
membership in the structures (e.g., formulae to compute the elements or formulae to state the manner in
which elements will be selected from some source of data, etc.). The language also allows the specifier to
state the organization of the structure in terms of the ordering or partial ordering of elements and the
composition of nested structures. The structures exist as persistent structures, wherein there is no
conversion necessary between internal and external structures [Lamb].

Having a single "metastructure," at first thought, seems to be a step backwards. However, actual
data structures to be built to solve a problem are less of a specification problem than they are an
implementation problem. In other words, when specifying the solution to a problem one may claim to
need a list, but one is unlikely to say that the list should be implemented as an array or linked list, etc.

The metastructure possesses the additional advantage that it is easier to infer the algorithms to
process a single data structure than it is to infer the algorithms to process different types of data
structures. Therefore, BagL does not require the specifier to state the algorithmic solution to the problem.
In other words, the ability to specify control structures is effectively abstracted out of the language. By
specifying only the "data structure" and not the algorithm, the specifier is indeed specifying (albeit in
detail) the external behavior of the system.

The nature of such a language in terms of its target abstraction level is an extremely important
decision. According to [Wirth] "One of the most crucial steps in the design of a language is the choice of
abstraction upon which programs are to base." Wirth goes on to say that it is important to select abstract
objects of a language from the same level. The single metastructure of BagL is the ordered multiset or
ordered bag. A bag may consist of a singleton or it may consist of ordered bags of ordered bags.

BagL is object oriented in that the focus in specification is upon the object produced by the
computer -- the focus is not on the program which produces the object. Furthermore, BagL may
recommend a visual or even virtual reality interface to allow the specifier to "visualize" and "visually
construct" the data structures. The introductory information concerning BagL appears in [Cooke92-3,
Cooke92-4, Cooke93, Pedroza92]. BagL possesses the following characteristics:



2

(I). provides a coherent and "better" abstraction level for problem solving,
(2). is unambiguous (i.e., possesses formal semantics),
(3). is general purpose and extensible,
(4). is concise in terms of features and constructs,
(5). allows for the appropriate interaction between features and constructs,
(6). provides for a correct transformation from specification to an efficient executable form,
(7). provides facility to reason about intended programs, and
(8). provides support for software maintenance or evolution.

A logical semantic (separate from the program semantic) of BagL is being developed. The intention
is to provide for a straightforward ability to reason about intended BagL programs. Furthermore, results
from the study of nonmonotonic logics [Gel] are to be applied to BagL to facilitate maintenance of BagL
software. The preliminary research in this direction appears in [Luqi, Ram9l, and Ram92]. Finally,
preliminary work on a concurrent semantic for BagL is being performed with initial work appearing in
[Cooke92-5].

Currently, the formal semantics of BagL are being revised and a BagL interpreter is being written
in Prolog. The interpreter and the application of nonmonotonic logic results to BagL go beyond the original
goals of this project.

1. INTRODUCTION.
When solving a problem, a problem solver faces two major concerns - the problem to be solved and

the technicalities involved in using the tools available to solve the problem. For example, when a mechanic
removes a spark plug, he/she must focus on the removal of the spark plug andtlhe technicalities involved in
using a socket wrench as a tool to remove the plug. We call the skills used for the former, general problem
solving skills and the skills employed in the latter, tool skills.

In order to use the socket wrench effectively, the mechanic may need an extension to be attached
to the socket wrench upon which the appropriate socket is to be placed. Once the tool has been set up, the
mechanic must use it properly in order to remove and not tighten the plug. After the tool set-up the
mechanic shares his/her attention between using the tool correctly and solving the problem at hand.

Tool skills are necessary in order to overcome the complexities inherent in using the tool. Past
efforts to improve the problem solving environment have involved abstracting out some focal point of tool
complexity, so that the problem solver can better focus on the general problem solving and problem domain
complexities. Therefore, each of the previous advancements in problem solving languages resulted from
attempts to abstract out the focal point of complexity in the less sophisticated language.

Machine complexities (i.e., register usage, memory management, etc.) provided this focal point in
early problem solving environments. In the development of FORTRAN, standard assembler programming
practices were identified and abstracted out, resulting in a language which insulated the programmer from
machine complexities. However, FORTRAN imposed no standard control structures. Thus, the control
structure complexity provided the focal point for further language improvement.

In Algol and Pascal, standard ways to set up selective and iterative control structures were
identified, virtually eliminating the need for the GO TO statement and the complexity which arises from its
use. Once again, through generalization of a tool-based complexity, software engineers were elevated in
their abstraction level, allowing for a focus on a more sophisticated class of complexity. Data-Control
structure complexities have been the focus of much of the current SPM as suggested by [Ovi, Boehm,
Curtis, Shneiderman].

In fact, large amounts of time are spent in the design of the interaction of data-control structures.
Hence, in recent years much effort has gone into the development of areas such as Abstract Data Types,
Data Flow Design methods, Data Encapsulation, etc. If it is possible to abstract out data-control structure
interactions, a true next generation language may result.

Many very high level languages recently developed reflect the tendency of software engineers to
identify features which are common to all of the software products they have developed within some well-
defined problem domain. Unfortunately, an understanding of past successes only assures that if future



3

problems are more or less like past problems, they can probably be solved with the language. However,
there is no guarantee of success.

When a new problem is encountered that cannot be solved by the domain specific language, there is
a tendency to add features to the language so that it can solve the problem. Zave claims that extending the
applicability of a language can easily damage its coherence [Zave]. Coherence has to do with whether or not
a language maintains a consistent level of abstraction or representation.

When a language becomes incoherent, serious problems may arise. Consider a hypothetical version
of a procedural language like Pascal which allows the programmer to dip into the assembler level of
representation. If a change is made to a program in this language, the programmer must endeavor to
understand the change at the Pascal and the assembler level. In other words, the programmer must
understand the interaction of the machine code generated by the compiler and the assembler code he/she
embedded in the source program.

Rather than beginning with a problem domain, the development of BagL began with attempts to
abstract out the focal point of tool complexity inherent in the procedural programming languages. In other
words, we began with an existing general purpose language, and attempted to eliminate the constructs
which complicate problem solutions in that language (i.e., we have abstracted out control constructs).

2. METHODS, ASSUMPTIONS, AND PROCEDURES.

2.1 An Overview of the Current Version of BagL.
The formal Syntax and Semantics of BagL are based upon general loop constructs where an infinite

amount of memory is available. Practically speaking, the majority of the memory of BagL will consist of
external disk files. The basic notion of BagL is the ordered bag (or multiset). All objects (be they reports,
screens, or databases) are ordered bags: from singleton bags to ordered bags of ordered bags.

The general form of a BagL program is BI = (mainj I,52...fn) , where main and each fi is of the
general form:

runcUon-name = (domain~range I D1 & D2 &...& Dm1
where
1. domain and range are lists of bag variables and
2. each Di is of the general form: if precondition then postcondition.

A precondition consists of a formula wherein relations are connected by & (and), OR (or), and - (not).
Relations are formed using the functors >, <, <=, >=, ý, and *. These are the standard algebraic relations,
except that they are redefined to operate with nonscalars (i.e., bags). The precise semantics of the
relations are beyond the scope of this paper.

In BagL there exists an environment E associated with every program fl. The environment E(UP),
consists of tuples which pair variable names (called Bag Variables, V's) and the actual values associated
with the variables. The the contents of V's named in the domain list of the main function are -input," in that
they are copied from the user environment to E(01). When main completes execution, the contents of all
range variables of the main function are copied out of E(n) to the user environment. Thus results are
output.

Similarly, when a function fi executes, it has an environment E(fi). The function calling fi copies the
values of all domain variables to E[fi). When fi completes execution, the values of all range variables are
copied out to the calling function's domain. Clearly, functions may be recursive. Consider the following
general example:

E(fa)= C <x,((1),(2))>, <y,(( 3 ),(4),(5),(6))> I

Assume fa contains, in its postcondition, the relation :=(z,fb(x,y)) and

fb=((m,n),pI if true then :=(p,+(m,n))



4

When :=(z,fb(x,y)) is executed, first fb's environment is established:

E(fb)= ( <m,((1),(2))>, <n,((3),(4),(5),(6))> ).

After executing, fb's environment is

E(fb)= [ <m,((1),(2))>, <n,((3),(4),(5),(6))>, <p,((4),(6),(6),(8))> .

Upon return to fa, fb's environment is destroyed and fa's environment is:

E(fa)= { <x,((1 ),(2))>, <y,((3),(4),(5),(6))>, <z,(4),(6),(6),(8))>}

This notion of copy-in and copy-out is depicted in figure 1.

A postcondition formula consists of relations connected by a single, sequencing connector ;. The
only possible relation in a postcondition formula is the assignment operation, ":='. Given :=(V,CB) in a
function, f, where V can be any possible variable and CB can be any possible bag, after execution of the
assignment, <V,CB> e E(f) or if f is main, <V,CB> e E(nl).

For i = j-1, if the precondition formula of Di fails, the precondition of Dj is attempted next. When a
precondition succeeds, the associated postcondition is executed. The syntax and semantics of the terms of
both pre and postcondition relations are given precisely in the next sections.

2.2 Syntax of BagL Terms
What follows are the formal definitions of the syntax of BagL terms. The bags of BagL are made up of

bags or atoms. Therefore, the definitions begin with the atom.

Def. ATOMS of BagL.
The atoms of BagL include real, integer, boolean, and string constants like those of extended versions

of Pascal.

Der. SUBTERMS of BagL.
1. Letter I.i is a subterm; and

2. if st is a subterm then pred(st) or succ(st) are subterms.

Der. UNARY OPERATIONS of BagL.
1. if st is a subterm and u is a unary operator such as sqrt, abs, etc., then v(st) is a unary operation,

o; and
2. if o is a unary operation and u is a unary operator, then u(o) is a unary operation.

Def. TERMS of BagL
1. 0 is a term;
2. if a is an atom then (a) is a term;
3. if t 1 , t 2 , ... tn are terms and n22 then (t 1 , t2 .  tn ) is a term (and is called a bag);

4. Variables x, y, z, X,Y, and Z are terms;

5. if i is a Greek letter or an integer constant, and t is a term, then ti is a term;
6. if a 1 through an are integer atoms, then ((a 1 )_.(ai),_, (a n)) is a term;

7. if a1 through an are integer atoms, then ((a 1 ) .(a i), _F_ ,(an ) is a term where F is of the general

form Q(o1 ,02) or simply o1 where w can be an arbitrary binary operator and oi are unary

operations or integer atoms;
8. if t 1 , t 2 , ... tn are terms and f is a function symbol then fit 1 , t 2 , ... tn I is a term;
9. if tl , t 2 , ... tn, then 2'[t 1 , t 2 , ... tn] and K'ft 1 , t2 , ... tnJ are terms;

10. Nothing else is a term.



5

The built-in function symbols include +, -, /, *, abs, sqrt, sqr, mod, size, etc. and special functions '
and 2' for ordering bags. All other functions are user defined. All functions produce bags as results.

copy out range copy in domain f

-. copy out range

copy in domain

copy out range

copy in domain copy in domain 0

copy out range::ýý
UserEnvironment . an/

2.3 Semantics of Terms
In the following, each item under the syntactic definition of the terms of BagL is reviewed. Item 1

provides for the empty bag. Item 2 states that an arbitrary atom (e.g., 5.2) is a term when placed in bag
markers (5.2). This item provides for the construction of the singleton bag.

Item 3 provides for the composition of bags of bags. For example, (5.2), ((1),(2),(3)), and (hello') are
terms and so is ((5.2), ((1),(2),(3)), (hello')).

Item 4 is concerned with the use of variables. Uppercase variables (called Bag variables) reference
globally available bags. In practice, global bags are available as external files - thus eliminating the need to
explicitly specify input and output. More formally, for a specification, there exists an execution time
environment, E, of ordered pairs <V,CB> where all named bags exist. Named bags may be placed in the
environment by the user (i.e., input) or by a specified function (i.e., computed or otherwise composed
automatically). An actual bag, CB, is paired with its name, V, in the environment, E. The goal of a BagL
specification is to discretely alter E to obtain some final Ef as indicated by the specification. An execution
may be viewed as a sequence of E 1,E2..... Er.

Lowercase variables are always quantified in a BagL specification and allow access to the components
of an associated Bag variable.

Item 5 provides for a mechanism to obtain the position of some element of a bag. Associated with any

element in CB is an ordinal position of the element. The ordinal position is obtainable through I of V't.
The following semantic definition provides the formal meaning of item 6. Note, that n, in the following

formulae, is an arbitrary value not necessarily known at the time a spocification is given.
Rules 1-11 provide for the formal meaning of the built-in functions of BagL associated with item 8 of

the syntactic definition of the term. The meaning of a user defined function is based upon the derived
meaning of a user specification and is beyond the scope of this paper.

In the following semantic definitions, assume ci is an arbitrary atomic constant, si is (ci ) or

(S 1 ,S2 n); bag variables, or computed bags, T; # stands for any binary operation; and a stands for any
unary operation. A bag consists of bag markers () enclosing a sequence of bags i, so that a bag is (Pi).
All operations begin according to rule 1, below (e.g., in general, *[BI. B2_...]). Rule numbers appear the
righthand margin. Finally, all unnecessary levels of parentheses are eliminated, i.e., ((x)) = (x).



6

Def. Simple Computed Bag of Integers.
Given T=((a 1 ),...,(a ),ia n)) The value of T is the bag ((c1 ).(c)i ).(c n))

where c 1 = a1 , ci = ai, cn =an,etc. for an arbitrary element k, where i i k K n, ck+1 =Ok+ 1 (1)

Example.
(C5),(8),__.,C(12)) = (C5),(8),(9),( 10),( 11 ),( 12)) n

The next definition provides the meaning of item 7. The variable, ,i always appears in the context of a
list being generated. Xi references the next element to be generated.

Def. Computed Bag.
Given, T=((a 1 ).....(ak ),_F_.(a n)) The value of T is the bag ((cc )1....(ck ).....(C n)) where c = al,c 2 =

a2 , etc. for an arbitrary element i, where k < i ý n,

(1). subterm pred(.Li) = ci_.1 and pred(ci )=ci_.1

I (2). subterm succ(•i) = ci+I and succ(ci)= ci+I
(3). ci+I =o(st 1 ) (0 o(st 2 ) where F= o)(o,o) and cij+ 1 K an or ci+ = o(st) (2)

I Examples.
((5),(8),_+(pred( Xi ),3)_,(21))=((5),(8),(11),(14),(17),(20))
((O),( 1 ),_+(pred(pred( ;ii )),pred( i ))_,(45)) = ((0),( 1 ),( 1 ),(2),(3),(5),(8),( 13),(21 ),(34))

((C1.25),_+(pred( iA),.0 1 ), 1 .30)) = ((1 .25),(1.26),(1.27),(1.28),(1.29),(1 .30)) 0

Definitions of Built in Functions.I (CB1,12 ... , Bn) ] (where n=2) = I n-I[...( *2[ ( #1 [(plx1),( 2 x2)] ), ( 3 x3)]) ....(Oxn)]) (3)

m

where m=max( 1311, IB21.. Inl) and xi is the rational number - and ixi indicates that the
sequence inside Bi (i.e., Pi) is repeated xi times where the order of Bi is preserved. Consider the following

example:

Example.
Assume B - ((1),(2),(3),(4),(5)), 52 = ((10),(20),(30)), 53 = (C10C2)) and +(B1,B2,B3) is to be
evaluated:

m = max( IBll, 1521, 1B31) = max( 5, 3, 2) = 5,
5x 1 is •'or 1 I] 1=C1),C2),C3),(4),(5)

x2 is 5 2-(10),(20),(30)
5

x3 is 5 " 0 3 =(1),(2)

2

Therefore BI is repeated one time, the sequence of B2 is repeated 1- times, and the sequence of B3 is
13

to be repeated 2- times resulting in the operation:

(+(+[(( 1 ),(2),(3),(4),(5)).,( 10),(20),(30),( 10),(20))].(( 1 ),(2),( 1 ),(2),( 1 ))].



7

Rule (3) decomposes an operation to a series of nested applications of the operator to no more than two
bags. The sequential repetition of objects in smaller bags based upon the cardinality of the largest bag
preserves the associative and commutative properties of addition and multiplication. 0

of (B 1, B2 ... , Bn) ] = ( @51, o@2 ... , @8n ) (4)

Rule (4) indicates how the unary operator is applied to a bag.

i Example.
sqrt[ ((9),(16),(25))1 = ((3), (4). (5) ) 0

size[ (13I, B2 ... , Bn) ]=( n ) (5)

For rules 3, 4, and 5: If Bi is a variable, Vi, then Vi is replaced by constant bag CBi where <Vi,CBi> E

E. If Bi is a computed bag, Ti, then Ti is replaced by constant bag CBi according to the appropriate rule (1
or 2) above.

Rule 6 is the most primitive rule to apply an arithmetic operator to two atoms:

*[(cI), (c 2 )] = (c 1I c 2 ) (6)

Example. *[(4),(5)] = (20) 0

Given #[B 1 ,2], rule 7 applies when IBil > 1. Effectively, rule 7 distributes an operation.

*[(Cs 1 )S2 ).....(s n ))(s n+l ),(Sn+2) .... (s 20) ] W[(s 1 ),(Sn+1 )], #[(s2),(Sn+2)] --. *[(Sn),(s 2n)

Example.
+[( 1),(2),3))((4),(5),(6))M
+[(1 ),(4)], +[(2),(5)], +[(3),(6)] 0

Example.
+ [( ( (( 1 ),2), (3) ), ((2,(4)))

+[((1),(2)), (2)), +[(3),(4)] 0

Rule 8 applies to nested operations.

C[ 01'1102)]= -[((Cca2P2)] wherect2 = #'1(8)

where P2 and/or al are sequences which may be empty.

Example. +(((4),(3)), -[(4),(3)] ] apply rule 15 then rule 2 = +f((4),(3)),(I)J apply rule 7, etc. 0

Rules 9-11 apply when # is K or i and reference item 9 of the syntactic definition of the term.
Assume # is either i' or 2'.

'[(a 1..(a n)] = ((cl),(c 2) .... (Ck )....(Cn)) (9)



8

such that for each Ck there is some ai and for every ai there is some Ck and (c1 c29...,ck,...9cn) holds.

Example.
< =-C((3),(4),(5),(9)C(),C, 1))]=(( 1 ),(3),(4),(5),C8),C9))

If B=(B1 ...,Bn) and for each Bi, IBil = m and no Bi has a component that is a nonsingleton bag, then

S"B ]= (4((c 1,1 ). c 1,n ))A.. - (Ccm, ) .,(c m,n)) (10)

"*[B,Bi 1= ((Cc 1,1).(c 1,n )) . (c m,1 ).Cc m,n
such that c1.i jc2,i *...*ck,i #...m cmJ C1)

Example. Assume edb = (id,sal,name) where id=(((4),(8),(9),(2),(1 ))),
sal =(((40000),(36000),(23000),(56000),(1 00000))),name=(((chico),(groucho),(zeppo),(harpo),(garbo)))

<='[edb,id] = ( CC 1 ),(lO0000),(garbo)), ((2),(56000),(harpo)),((4),(40000),(chico)),
((8),(36000),(groucho)),((9),(23000),(zeppo)) ) 0

All of the semantics presented here have been implemented in a BagL interpreter written in Prolog. All
i examples have actually executed under the interpreter.

2.4 Complete Examples
In this section, the full vision of BagL is made evident through examples. Consider the definition to

compute n!. Assume N is a singleton bag containing an integer.

fact = (N,NFACT I if >(N,CO)) then :=(NFACT, *[C1),_,(N))]) &if =C(N,O)) then :=(NFACT,(1)) I

I Consider also the specification to square a matrix. Assume X is a two dimensional bag
X=(c 1 c2.....cn) wherein for i=l..n, Icil=n:

I sq = (X,X. I (x\X)( if =(x,X i,j) then :=(X i,j., +[*[Xi,* X*,j ]])))

in which =(x,X i,j) is the precondition and :=(X iS, +[*[Xi-* ,X*,J ]]) is the postcondition. The superscripts
in the formula are actually subscripts of the referenced bag, X. The precondition requires that for any
element x, x is of some row i and column j of bag X. Notice that the actual values of a Bag's subscript
are obtained in the precondition, where the specifier states, that for any x, x occupies position iij of the
bag X.

The postcondition states that the Ci,j)th element of the bag X" is to contain the sum of the products of

corresponding elements of row i and column j of bag X. The asterisk (*) as a subscript indicates all

possible values of the subscript. Hence, the reference Xi,*, refers to row i and the reference X*,J, refers
to column j. If row i contains elements (CC1),2),C:3)) and column j contains elements ((3),(2),C4)) the
result of *[Xi,* ,X*,j I is the bag, (W3),(4),(12)). The result of +[(3),(4),(12)] is the singleton bag, (19).
This would be the result assigned to xi,J'.

Finally, assume there exists a bag of salaries, SAL=((23000),(45000),(55000)), and a bag of
employees, EMP=((larry), (curley), (moe)). Assume Larry's salary is $23000, Curley's is $45000, etc.
Therefore, the user establishes (as input) the initial execution time environment:

EO = k<EMP, CMlarry), (curley), (moe))>, <SAL, ((23000),(45000),(55000)) > }

To create an employee database, the following specification is executed:

fdb=(CEMP,SAL),EMPDBlif true then :=(EMPDB,(EMP,SAL)) I



9

The function fdb demonstrates that BagL is used for schema processing on a database. The result of

this specification is:

E1 = (<EMPDB, (EMP,SAL)>,<EMP, ((larry), (curley), (moe))>, <SAL, ((23000),(45000),(55000)) >

The remaining functions demonstrate that BagL also serves as a database manipulation and
computational language (i.e., in addition to schema processing, BagL also plays the role of the query and
host language). Suppose it is desirable to give all employees a ten percent pay increase, but first it is
desirable to know how much money must be added to the budget to absorb the pay increase:

extra= [EMPDB,REQUIRED I if=(EMPDB.(EMPSAL)) then :=(REQUIRED+[* [(0. 1 ),SAL I])

The result of this specification is that <REQUIRED, (12300) > is added to the execution time
environment above.

E2 = (<REQUIRED. (12300) ><EMPDB, (EMP,SAL)>,<EMP, ((larry), (curley), (moe))>
<SAL, ((23000),(45000),(55000)) > }

Perhaps it is also wise to know what the entire salary budget should be for the pay raise:

sbudg = [EMPDB,SALBUD I if =(EMPDB,(EMP,SAL)) then :=(SALBUD,+[*(( 1.1),SAL] ])

The result of this specification is that <SALBUD, (135300) > is added to the execution time
environment.

E3 = f<SALBUD, (135300) ><REQUIRED, (12300) >,<EMPDB,(EMP,SAL)>,
<EMP,((larry),(curley), (moe))><SAL, ((23000),(45000),(55000)) >]

After careful consideration, the raise is given:

raise=[EMPDB,EMPDB'I if =(EMPDB,(EMPSAL)) then :=(SAL',*[(( .I),SAL]; :=(EMPDB',(EMP,SAL')) 1.

After execution of this final specification, the execution time environment (which is available to the
user externally) is:

Ef = [<SALBUD,(135300) ><REQUIRED, (12300) >,<EMPDB, (EMP,SAL)>,<EMP, ((larry), (curley), (moe))>,
<SAL, ((25300).(49500),(60500)) >)

These multisets are available to the user through screen views and reports. Thus no conversion from
an internal to external data structure is necessary (i.e., BagL is a persistent language).



10

I 3. RESULTS AND DISCUSSION.
In this section we will review the results which have been obtained. Please see appendix A for the

I "Statement of Work" which appeared in our original proposal.

3.1 PROJECT PERSONNEL.
The results obtained are based on the work of a total of six people. Dr. Michael Gelfond, Professor

of Computer Science at UTEP, received one month's salary each year for the technical assistance he lends
to the project. Dr. Daniel Cooke receives one month's salary each year as project director and principal
researcher. Ms. Ann Gates and Mr. Bassam Chokr both received their twelve month salaries from the
project. Ms. Gates is a research associate and Mr. Chokr is a research assistant.

Mr. Chokr is working towards a Masters Degree in Computer Science and Ms. Gates is working
towards a Ph.D. The research component of their respective degrees is to be based on the research they
conduct for the project. Previously, Mr. Rito Delgado and Mr. Miguel Pedroza were funded on this project.
Both Mr. Delgado and Mr Pedroza have completed Masters Degrees as has Ms. Gates. Mr Delgado works for
Research, Analysis, and Maintenance in El Paso. Mr. Pedroza is employed at IBM, San Jose. Ms. Gates is a
Ph.D. student at New Mexico State University where Prof. Cooke serves as her supervising professor.

3.2 RESULTS.

We have accomplished the following activities:

1. Study of interaction between iterative construct and nonscalar data structures;
2. Completed Denotational Semantics of BagL;
3. Initiated work on a logical semantic for BagL;
4. Initiated work on a Visual Interface for 8agL;
5. Initiated work on semantic extensions to support software maintenance in BagL; and
6. Initiated work on a BagL interpreter.

It is felt that BagL may serve as an excellent language for quickly developing programs to process
Telemetry Data for Satellite Groundstations. Mathematicians believe it will also serve as an excellent
language for conducting experiments in Interval Mathematics. Further evidence of the success of our
theoretical work can be observed in our publications. The following is a list of papers/books based on the
AFOSR project at UTEP.

Books
The Impact of Computer .Aided So ftware Engineering on Software Processes. World Scientific

Publishers, Ltd. Contributors: Raymond Yeh, Peter Ng, Luqi, Joseph Urban, Ron Norman,
W.D. Hurley, John Baker, Patrick Bobbie, WT Tsai, Greg Boone, Nick Bourbakis, etc. In
press.

Software Automation. Contributors: CV Ramamoorthy, Raymond Yeh, Peter Ng, Luqi, Berzins,
Joseph Urban, Murat Tanik, etc. In progress.

Journal Papers
D.E. Cooke, "Towards a Formalism To Produce a Programmer Assistant CASE Tool," IEEE

Transactions on Knowledge and Data Engineering, Vol. 2 No. 3, September, 1990, pp. 320-
326.

D.E. Cooke and A. Gates, "On the Development of a Method to Synthesize Programs from
Requirement Specifications," International Journal on Sol ware Engineering and Knowledge
Engineering, Vol I No 1, (March, 1991) pp. 21-38.



11

Daniel E. Cooke, "An Issue of the Next Generation of Problem Solving Environments," Journal of
Systems Integration, Vol 1(2). (February. 1992) pp. 39-52.

C.V. Ramamoorthy, Daniel E. Cooke, and Chitta Baral, "Maintaining the Truth of Specifications in
Evolutionary Software," to appear International Journal of TAI..

Refereed Conferences/P roceedings
D.E. Cooke, "Proving Properties of Software Dcsign Methods," Proceedings of the First

International Conference on Solf ware Engineering and Knowledge Engineering, June, 1989.
pp.9-12.

A. Gates and D. Cooke, "An Introduction to the Recognition of Iterative Structures by a CASE
Tool," Proceedings of the Second International Conference on Software Engineering and
Knowledge Engineering, Skokie, Illinois, June, 1990 pp.201-208.

Daniel E. Cooke and Ann Gates, "On the Application of Stratification to Requirement
Specifications," Proceedings of the Second International IEEE Conference on Tools for
Artificial Intelligence, November, 1990, pp. 760-766.

Daniel E. Cooke, "Methods of Program Generation for Engineering Applications," Proceedings of
ASPlE Energy-sources Technology Conference , Houston, Texas (January, 1991), pp. 15 -
20.

Daniel E. Cooke, Miguel Pedroza, and Ann Gates, "Interaction Of Data Structures and Primitive
Operations of Language LO," Proceedings of the Third International Conference on
Software Engineering and Knowledge Engineering, June 1991, pp. 78-83.

C.V. Ramamoorthy and Daniel E. Cooke, "The Correspondence Between Methods of Artificial
Intelligence and the Production and Maintenance of Evolutionary Software," Proceedings of
the Third International IEEE Conference on Tools for Artificial Intelligence, November,
1991, pp. 114-118.

Ann Gates and Daniel E. Cooke, "On a Fundamental Relationship Between Software Reuse and
Software Synthesis," Proceedings of Hawaii International Conference on System Sciences

Vol. AI, Kauia, Hawaii (January, 1992) pp. 539-548.
Mike Pedroza and Daniel Cooke, "The Informal Semantics of BagL," PD-Vol. 43, Computer

Applications and Design Abstraction ASIVE 1992, Houston, Texas (January, 1992) pp. 29 -
32.

Luqi and D. Cooke, "The Management of Uncertainty in Software Development," IEEE COt1PSAC 92.
Chicago, IL, pp. 381-386.

Daniel E. Cooke, "Issues Surrounding Specification Languages For Software Automation,"
Proceedings of IEEE Fifth International Workshop on Computer Aided Software Engineering,
July 6-10, 1992, Montreal, Canada, pp. 120-123.

Daniel E. Cooke and Aida Gutierrez, "An Introduction to BagL," IEEE Fourth International
Conference on Software Engineering and Knowledge Engineering, Capri, Italy, pp. 479-486.

Daniel E. Cooke, "Logical Development of a Petri Net Deadlock Analysis Program," Proceedings of
the Fourth International IEEE Conference on Tools for Artificial Intelligence, November,
1992, pp. 230-233.

Daniel E. Cooke, "Arithmetic Over Multisets Leading to a High Level Language," Proceedings
Computers in Engineering Symposium 1993, Houston, Texas (January, 1993) to appear.

* Panel Papers
D. Cooke, T. Escamilla, and M. Gibson, "The Correspondence Between Methods of Artificial

Intelligence and the Production and Maintenance of Evolutionary Software," Proceedings of
the Third International Conference on Soft ware Engineering and Knowledge Engineering,
June 1991, pp. 114-115.

B. Blum, D. Cooke, X. Li, N. Minsky, and R. Semmel, "The Best Approach to Knowledge
Representation for Software Engineering," Proceedings of the Third International
Conference on Software Engineering and Knowledge Engineering, June 1991, pp. 166-167.



12

D. Cooke, M. Feather. S. Fickas, N. Minsky, P. Selfridge, D. Smith, and J.P. Tsai, "Is Al the Solution
for Software Engineering?." Proceedings of the Third International IEEE Conference on
Tools for Artificial Intelligence, November, 1991, pp. 10-12.

Valdis Berzins, Daniel E. Cooke, Luqi , Peter Ng, C.V. Ramamoorthy, Murat Tanik, Joe Urban, and
Raymond Yeh, "Workshop on Software Automation," IEEE Systems Integration Conference,
Proceedings of 1992 IEEE International Conference on Systems Integration. Morristown,
NJ, (June 15-19, 1992) pp. 720-722.

Further evidence of our success is the following list of invitations Dr. Cooke has received during
the three year period:

Program Committees
Second International Conference on Software Engineering and Knowledge Engineering (S.K. Chang,

Conference Chair).
Third International Conference on Software Engineering and Knowledge Engineering (S.K. Chang,

Conference Chair).
Fourth International Conference on Software Engineering and Knowledge Engineering (S.K. Chang,

Conference Chair).
Second IEEE Systems Integration Conference (Raymond Yeh and Peter Ng, Conference Co-Chair).
Third IEEE Systems Integration Conference (Raymond Yeh and Peter Ng, Conference Co-Chair).
European Joint Conference on Engineering Systems Design and Analysis (A. Ertas and T. Derbentli,

Conference Co-chair).
IEEE TAI 91 (Benjamin Wah Conference Chair).
IEEE TAI 92 (Stephanou Conference Chair).
Vice Program Chair IEEE TAI 92.
Symposium Chair ASP/E Computer Applications and Design Abstraction 93.
Chair of Workshop on Software Automation for Systems Integration Conference 1992.
Chair of Workshop on Software Automation for Software Engineering and Knowledge Engineering

Conference, 1993.

Journal Activities
Associate Editor of the Journal for Software Engineering and Knowledge Engineering.
Book Review Editor of the Journal for Software Engineering and Knowledge Engineering.
Editing a special issue of the Journal for SofTware Engineering and Knowledge Engineering for June,

1991 Publication,
Reviewer for IEEE Computer, IEEE Software, IEEE Transactions on Knowledge and Data Engineering.

Journal of Systems Integration, Journal of Systems and Soft ware. and Journal of Tools For
Artificial Intelligence.

Invited Talks
"Proving Properties of a CASE Tool," Texas A&M University, Hosted by Dr. John Leggett, April

16, 1990.
"Issues in Computer Aided Software Engineering," University of California, Berkeley, Hosted by

Professor C.V. Ramamoorthy, April 30, 1990.
"Issues in CASE Technology Transfer," IEEE CASE '90 Fourth International Workshop, Irvine,

California, December 6, 1990.
"The Development of a Requirement Specification Language," Texas A&M University, Hosted by

Dr. John Leggett, February 6, 1991.
"Logic and Software Engineering," Panelist, Third International Conference on Software Engineering

and Knowledge Engineering, June 1991.
"Ambiguity in Software Engineering," Panelist, Third International Conference on Software

Engineering and Knowledge Engineering, June 1991.



I
13

"I "Expert Systems in Program Verification," Space Grant Consortium, Austin, Texas, June 18,
1991

"An Overview of CASE," Naval Postgraduate School, Hosted by Dr. Luqi, July-August, 1991.
"Program Synthesis: Generalizations for the Purpose of Program Synthesis," Naval Postgraduate

School, Hosted by Dr. Luqi, July-August, 1991.
"Program Synthesis: Languages L2 and DecSpec Purpose of Program Synthesis," Naval

Postgraduate School, Hosted by Dr. Luqi, July-August, 1991.
"Program Synthesis: Ambiguity Issues," Naval Postgraduate School, Hosted by Dr. Luqi, July-

August, 1991.
"Is Artificial Intelligence the Answer for Software Engineering?" Panelist, Third IEEE Tools for

Artificial Intelligence Conference, San Jose, CA, November, 1991.
"Software Automation Issues," 1992 IEEE International Conference on Systems Integration,

Morristown, New Jersey, June 15, 1992.
"Novel Approaches to Systems Integration," 1992 IEEE International Conference on Systems

Integration, Morristown, New Jersey. June 16, 1992.
"An Introduction to BagL," Naval Postgraduate School, Hosted by Dr. Luqi, August, 1992.
"An Application of CAPS to Support Software Maintenance," Naval Postgraduate School, Hosted by

Dr. Luqi, August, 1992.
"Formal Methods in CASE," IEEE CASE Fifth International Workshop, Montreal, Canada, June 8,

1992.
"Software Engineering Support for Program Generation and Maintenance," Research Analysis and

Maintenance, Hosted by Pay Day, August, 1992.
"Knowledge Acquisition and Process Acquisition," IEEE Tools With Artificial Intelligence 92,

Arlington, Virginia, November, 1992.

With respect to the statement of work, we have completed the study leading to the unambiguous
specification language as evidenced by the formal syntax and semantics of BagL. We are making excellent
progress towards a BagL interpreter being written in Prolog.

4. CONCLUSIONS.
Currently, we can conclude that we have indeed realized the goal of developing an unambiguous

executahle specification language as evidenced by the denotational semantics of BagL. Furthermore, we
have established the significance of the application of results of the study of nonmonotonic logic to
specification languages for the purpose of enhancing the ability to automatically maintain software. Finally,
it seems clear that BagL recommends a visual interface. Since the specifier is strictly defining a single
structure, the bag, varieties of structural icons are unnecessary. However, a traditional visual interface
(via a CRT screen) is not realistic in the long term in that the screen limits the size and dimensions of bags
that a person may wish to specify. Therefore, a virtual reality interface may provide the best human
interface for the formal language, BagL.

5. RECOMMENDATIONS.
The work on BagL is far from complete. There are no doubt further changes that will be required of

the formal language. We propose to do the following work:

(1). Complete a BagL interpreter based upon the current syntax and semantics;
(2). Enhance the semantics of BagL to abstract out quantifier information;
(3). Show expressiveness (via LISP approach);
(4). Extend semantics of BagL to provide facilities for realtime specification and concurrency;
(5). Establish a logical semantic for BagL to provide for constraints;
(6). Provide automatic facilities to help maintain BagL software; and
(7). Develop a prototype BagL environment including a visual interface.



14

Clearly, we are recommending a large scale effort in the long term. We realize our limitations and
do not recommend that we do all of this work in isolation based upon a single proposed effort. We intend to
maintain our contacts and work with other universities (NPS, Berkeley, etc.) over the next several years
Furthermore, Cooke is now a member of the graduate faculty at NMSU where he can serve as supervising
professor on Ph.D. dissertations.

U.T. El Paso (UTEP) provides an ideal setting for the recommended effort. The majority of C.S.
faculty at UTEP are working in efforts directly related to the proposed work. Michael Gelfond and Chitta
Baral work in the semantics of logic programming and in nonmonotonic logic. Gelfond and Lifschitz recently
established the stable model semantics of logic programming [Gel]. Alexander Rabinovich joined the UTEP
C.S. faculty in September, 1992. Rabinovich is well known for his contributions to the semantics of
concurrency. The results of all the C.S. faculty are shared in weekly faculty seminars held at UTEP.

In addition to the deliverable interpreter, progress and success of this project will be measurable
in terms of the number of refereed publications based upon the proposed research. In the research
previously funded by AFOSR, 17 papers have already appeared in print. We believe that we should be able
to publish minimally four papers for each year of funded activity.

REFERENCES.
[Berzins] Berzins, V., and Luqi, Software Engineering with Abstractions, Reading, Mass., Addison-Wesley

Publishing Company, 1991.
(Boehm] B.W. Boehm, "Software Life Cycle Factors," Handbook of Software Eng47eering. Vick and

Ramamoorthy, eds. Van Nostrand Reinhold Electrical/Computer Science and Engineering Series, New
York, 1984, pp. 494-518.

[Cam] R. D. Cameron, "Efficient High-Level Iteration with Accumulation," .AC/I Transactions on
Programming Languages and Systems 11,2 (April 1989), 194-211.

ICookeB9J D.E. Cooke, "Proving Properties of Software Design Methods," Proceedings of the First
International Conference on Software Engineering and Knowledge Engineering, June, 1989, pp.9-12.

[Cooke90-1] "Towards a Formalism for Program Generation," Daniel E. Cooke, for the Air Force Office of
Scientific Research, *F49620-89-C-0074, July, 1990.

(Cooke90-2] D.E. Cooke, "Towards a Formalism To Produce a Programmer Assistant CASE Tool," IEEE
Transactions on Knowledge and Data Engineering, Vol. 2 No. 3, September, 1990, pp. 320-326.

[Cooke9O-3] Daniel E. Cooke and Ann Gates, "On the Application of Stratification to Requirement
Specifications," Proceedings of the Second International IEEE Conference on Tools for Artificial
Intelligence, November, 1990, pp. 760-766.

[Cooke9l-1] Daniel E. Cooke, "Methods of Program Generation for Engineering Applications," Proceedings
of AS/IE Energy-sources Technology Conference, Houston, Texas (January, 1991), pp. 15-20.

[Cooke9l-21 D.E. Cooke and A. Gates, "On the Development of a Method to Synthesize Programs from
Requirement Specifications," International Journal on Software Engineering and Knowledge
Engineering, Vol 1 No 1, (March, 1991) pp. 21-38.

(Cooke9l-3] Daniel E. Cooke, Miguel Pedroza, and Ann Gates, "Interaction Of Data Structures and
Primitive Operations of Language LO," Proceedings of the. Third International Conference on Solfware
Engineering and Knowledge Engineering, June 1991, pp. 78-83.

[Cooke9l-4] "Towards a Formalism for Program Generation," Daniel E. Cooke, for the Air Force Office of
Scientific Research, *F49620-89-C-0074, July, 1991.

[Cooke92-1] Daniel E. Cooke, "An Issue of the Next Generation of Problem Solving Environments," Journal
of Systems Integration, Vol 1(2), (February, 1992) pp. 39-52.

[Cooke92-2] Daniel E. Cooke, "Issues Surrounding Specification Languages For Software Automation,"
Proceedings of IEEE Fifth International Workshop on Computer .Aided Soft ware Engineering, July 6-10,
1992, Montreal, Canada, pp. 120-123.

[Cooke92-31 Daniel E. Cooke and Aida Gutierrez, "An Introduction to BagL," IEEE Fourth International
Con ference on Software Engineering and Knowledge Engineering, Capri, Italy, pp. 479-486.



15

[Cooke92-4] "Towards a Formalism for Program Generation," Daniel E. Cooke, for the Air Force Office of
Scientific Research, *F49620-89-C-0074, July, 1992.

[Cooke92-5] Daniel E. Cooke, "Logical Development of a Petri Net Deadlock Analysis Program,"
Proceedings of the Fourth Internathonal IEEE Conference on Tools for Artlficial Intelligence, November.
1992, pp. 230-233.

[Cooke93] Daniel E. Cooke, "Arithmetic Over Multisets Leading to a High Level Language," Proceedings
Computers in Engineering Symposium 1993, Houston, Texas (January, 1993) to appear.

[Curtis] Bill Curtis et. al. "Measuring the Psychological Complexity of Software Maintenance Tasks with
the Halstead and McCabe Metrics," IEEE Trans. Soft. Eng. Vol. SE-5 Number 2, March, 1979, pp. 9 5-
104.

[Dji] E. Djikstra, "Guarded Commands, Nondeterminancy and the Formal Derivation of Programs,"
Communications of the ACN1, Vol. 18 No. 8, pp.453-457, August, 1975.

[Gates90] A. Gates and D. Cooke, "An Introduction to the Recognition of Iterative Structures by a CASE
Tool," Proceedings of the Second International Conference on Sol ware Engineering and Knowledge
Engineering, Skokie, Illinois, June, 1990 pp.201-208.

[Gates92] Ann Gates and Daniel E. Cooke, "On a Fundamental Relationship Between Software Reuse and
Software Synthesis," Proceedings of Hawaii International Conference on System Sciences Vol. AI,

Kauia, Hawaii (January, 1992) pp. 539-548.
(Gel] Gelfond, M. and Lifschitz, V, "The Stable Model Semantics for Logic Programming," In R.A. Kowalski

and K.A. Bowen, editors, Proc. 5th International Conference and Symposium on Logic Programming,
pages 1070-1080, Seattle, Washington, August 15-19, 1968.

[Lamb] Charles Lamb et.al., "The ObjectStore Database System," CAC, Vol. 34, No. 10, October, 1991,
pp. 50-63.

(Lis] B. Liskov, A. Snyder, R. Atkinson and C. Schaffert, "Abstraction mechanisms in CLU," ACH 20,8
(August 1977), 564-576.

ELuqi] Luqi and D. Cooke, "The Management of Uncertainty in Software Development," IEEE COMPSAC 92,
Chicago, IL, pp. 381-386.

[Ovi] Oviedo, E.I., "Control flow, data flow, and program complexity," Proc. IEEE Computer Sol0 ware and
Applications (Nov. 1980), pp. 14 6-152.

[Pedroza92] Mike Pedroza and Daniel Cooke, "The Informal Semantics of BagL," PD-Vol. 43 Computer
Applications and Design Abstraction ASMIE 1992, Houston, Texas (January, 1992) pp. 29-32.

[Ram9l] C.V. Ramamoorthy and Daniel E. Cooke, "The Correspondence Between Methods of Artificial
Intelligence and the Production and Maintenance of Evolutionary Software," Proceedings of the Third
International IEEE Conference on Tools for Artificial Intelligence, November, 1991, pp. 114-118.

[Ram92] C.V. Ramamoorthy' Daniel E. Cooke, and Chitta Baral, "Maintaining the Truth of Specifications in
Evolutionary Software," to appear International Journal of TAI..

[Shaw] M. Shaw, W. A. Wulf and R. L. London, "Abstraction and Verification in Alphard: Iteration and
Generators," in Alphard. Form and Content, edited by M. Shaw, 73-110, New York: Springer &
Verlag, 1981.

[Shneiderman] Ben Shneiderman, Soilware Psychology Human Factors in Computer and Information
Systems, Winthrop Publishers, Cambridge, Massachusetts, 1980.

[Wirth] Wirth, N., "On the Design of Programming Languages", in Programming Languages: A Grand Tour,
Edited by E. Horowitz, PP. 23-30, Computer Science Press, Rockville, MD, 1983.

[Zave] P. Zave, "An Insider's Evaluation of PAISLey," IEEE Transactions on Software Engineering, Vol. 17,
No.3, March, 1991 (pp.212-225).



16

GLOSSARY.
bags - a multiset, or a special ste which allows for duplicatz3 of elements.

BagL - a language wherein the only object of computation and/or manipulation is an ordered bag of ordered

bags.

primitive - a design element which must be present in a design in order to avoid ambiguity in a design.

Problem Solving Abstraction (PSA) - an environment which provides tools for the purpose of

problem solving. Currently, the typical problem solving abstraction consists of the procedural

programming language environment.

program generation - a mechanical production of executable programs from requirement or design

specifications.

semantics - the meaning of a syntactic unit either formally or operationally.

semantics, logical - a logical interpretation of a transformed program statement to facilitate
reasoning about the program.

semantics, program - an executable interpretation of a program statement.

software requirement - constraints of a problem to be solved.

software specification - a statement of the functionality intended of a software component.

software design - how a problem is to be solved.

syntax - the rules which state how to construct a valid sentence in some language.

synthesis - a formal method of program generation from specifications.



17

INDEX.

Denotational Semantics 10
logical semantic 10
nonmonotonic logic 13
virtual reality 13
Visual Interface 10



18

Appendix A - Statement of Work
We propose to investigate the theoretical and applied questions associated with establishing an

unambiguous software design methodology. This work will contribute both to the areas of software
engineering and automatic programming/design. In software engineering, the work will lead to a formal
method for the development of a design methodology. In the area of automatic programming/design the
proposed work will lead to a more precise method for system specification.

We intend to develop an unambiguous design methodology through the formal analysis of existing

software design elements. As a result of the analysis we will identify a set of software design primitives.
A design element will be a primitive element if and only if its absence from the design methodology leads to
ambiguity. At the same time the remaining design elements will be deemed nonprimitive. Methods to
derive the nonprimitive elements from the primitives will be developed.

Once the design methodology has been developed, work will begin on an automatic design tool. The

automatic design tool will be based on the design methodology and will be written in Prolog. The
specifications for the design tool will arise out of the methods of derivation defined for the nonprimitive
elements.
Finally, to test the design methodology and automatic design tool, sample problem solutions will be
submitted to the automatic design tool.



19

Appendix B -

Daniel E. Cooke, Ph.D.

GENERAL INFORMATION:
DATE OF BIRTH: March 23, 1955
CITIZENSHIP: U.S.

Education
1984- 1986 Ph.D. in Computer Science, Univercity of Texas at Arlington.
1977- 1978 Master of Computing Science, Texas A&M University.
1 973- 1977 Bachelor of Science, Sam Houston State University.

Honors
Maclntosh-Murchison Chair in Engineering, Maclntosh-Murchison Faculty Fellow, Visiting
Research Professor at Naval Postgraduate School (Summers, 1991, 1992), American Electronics
Association Fellow, Sigma Xi, Tau Beta Pi, U.P.E., Alpha Chi.

Professional
9/92- present Maclntosh-Murchison Chair in Engineering, Associate Professor of Computer Science,

and Graduate Advisor, The University of Texas at El Paso.
9/91-8/92 Maclntosh-Murchison Faculty Fellow, Assistant Profe!:sor of Computer Science, and

Graduate Advisor, The University of Texas at El Paso.
5/87-8/91 Assistant Professor of Computer Science and Graduate Advisor, The University of

Texas at El Paso.
9/86-5/87 Assistant Professor of Computer Science, Texas Christian University.
5/86-9/86 Senior Software Engineer, Advanced Technology Department, General Dynamics, Corp.
9/84-5/86 Assistant Instructor of Computer Science, The University of Texas at Arlington.
5/82-5/84 Instructor of Computer Science, Hardin-Simmons University.
10/80-5/82 Systems Analyst, Data Processing Center, Texas A&M University.
1/79-10/80 Research Associate, Computer Science Department, Texas A&M University.
9/77-12/78 braduate Assistant in Teaching, Computer Science Department, Texas A&M University.

RESEARCH:
Visiting Research Professor at Naval Postgraduate School (Summers 1991, 1992)

Research Contracts
Principal Investigator for a Contract: "fhe Formal Definition of an Inherently Unambiguous Design

Methodology," U.S.A.F. Office of Scientific Research *F49620-89-C-0074. From June, 1989 -

December 1992.
Principal Investigator for a Contract: "A Plan for a National Center for Computer Aided Software

Engineering," U.S. Navy, Office of Naval Research * N60921-89-C-A182 From August, 1989 -
March, 1990.

Co-PI Materials Research Center of Excellence, National Science Foundation.
Co-PI National Science Foundation CISE Computer Science Dept. UTEP.

Invited Talks
"Proving Properties of a CASE Tool," Texas A&M University, Hosted by Dr. John Leggett, April 16, 1990.
"Issues in Computer Aided Software Engineering," University of California, Berkeley, Hosted by Professor

C.V. Ramamoorthy, April 30, 1990.



20

"Issues in CASE Technology Transfer," IEEE CASE '90 Fourth International Workshop, Irvine, California,
December 6, 1990.

"The Development of a Requirement Specification Language," Texas A&M University, Hosted by Dr. John
Leggett, February 6, 1991.

"Logic and Software Engineering," Panelist, Third International Conference on Software Engineering and
Knowledge Engineering, June 1991.

"Ambiguity in Software Engineering," Panelist, Third International Conference on Software Engineering and
Knowledge Engineering, June 1991.

"Expert Systems in Program Verification," Space Grant Consortium, Austin, Texas, June 18, 1991
"An Overview of CASE," Naval Postgraduate School, Hosted by Dr. Luqi, July-August, 1991.
"Program Synthesis: Generalizations for the Purpose of Program Synthesis," Naval Postgraduate School,

Hosted by Dr. Luqi, July-August, 1991.
"Program Synthesis: Languages L2 and DecSpec Purpose of Program Synthesis," Naval Postgraduate

School, Hosted by Dr. Luqi, July-August, 1991.
"Program Synthesis: Ambiguity Issues," Naval Postgraduate School, Hosted by Dr. Luqi, July-August,

1991.
"Is Artificial Intelligence the Answer for Software Engineering?" Panelist, Third IEEE Tools for Artificial

Intelligence Conference, San Jose, CA, November, 1991.
"Software Automation Issues," 1992 IEEE International Conference on Systems Integration, Morristown,

New Jersey, June 15, 1992.
"Novel Approaches to Systems Integration," 1992 IEEE International Conference on Systems Integration,

Morristown, New Jersey, June 16, 1992.
"An Introduction to BagL," Naval Postgraduate School, Hosted by Dr. Luqi, August, 1992.
"An Application of CAPS to Support Software Maintenance," Naval Postgraduate School, Hosted by Dr.

Luqi, August, 1992.
"Formal Methods in CASE," IEEE CA SE Fiflh International Workshop, Montreal, Canada, June 8, 1992.
"Software Engineering Support for Program Generation and Maintenance," Research Analysis andI Maintenance, Hosted by Ray Day, August, 1992.
"Knowledge Acquisition and Process Acquisition," IEEE Tools With Artificial Intelligence 92. Arlington,

Virginia, November, 1992.

Refereed Journal Publications
D.E. Cooke, "Formal Specifications of Resource-Deadlock Prone Petri Nets," The Journal of Systems and

Software, Vol. 11 No. I (January, 1990) pp. 53-69.
D.E. Cooke, "Towards a Formalism To Produce a Programmer Assistant CASE Tool," IEEE Transactions on

Knowledge and Data Engineering, Vol. 2 No. 3, September, 1990, pp. 320-326.
D.E. Cooke and A. Gates, "On the Development of a Method to Synthesize Programs from Requirement

Specifications," International Journal on Software Engineering and Anowledge Engineering, Vol 1
No 1, (March, 1991) pp. 21-38.

Daniel E. Cooke, "The Impact of CASE on Software Development Processes: Guest Editor's Introduction,"
International Journal on Soft ware Engineering and Knowledge Engineering, Vol 1 No 2, (June,
1991) pp. iii-iv.

Daniel E. Cooke, "An Issue of the Next Generation of Problem Solving Environments," lournal of Systems
Integration, Vol 1(2), (February, 1992) pp. 39-52.

Daniel E. Cooke, "The Impact of CASE on Software Development Processes I1: Guest Editor's Introduction,"
International Journal on Sotl ware Engineering and Anowledge Engineering, Vol 2 No 2, (June,
1992) pp. 169-170.

C.V. Ramamoorthy, Daniel E. Cooke, and Chitta Baral, "Maintaining the Truth of Specifications in
Evolutionary Software," to appear International Journal of TA/. .

Journal Papers in Preparation.
Daniel E. Cooke, "Possible Effects of the Next Generation Programming Language on the Software Process

Model," under revision.



21

3 Luqi and Daniel E. Cooke, "Rapid Prototyping and a Model for Software Maintenance," in preparation.
Daniel E. Cooke, "An Introduction to a High Level Programming Language," in preparation.

Refereed Conferences/ProceedingsI D.E. Cooke, "Petri Nets: A Tool for Representing Concurrent Activities in Space Station Applications,"
Space Station Automation I//, Wun Chiou, Sr., Editor, Proc. SPIE 851, pp. 53-63 (1987).

D.E. Cooke, "Proving Properties of Software Design Methods," Proceedings of the First International
I Conference on Software Engineering and Knowledge Engineering, June, 1989, pp.9-12.

A. Gates and D. Cooke, "An Introduction to the Recognition of Iterative Structures by a CASE Tool,"
Proceedings of the Second International Conference on Solf ware Engiheering and Knowledge
Engineering, Skokie, Illinois, June, 1990 pp.201-208.

Daniel E. Cooke and Ann Gates, "On the Application of Stratification to Requirement Specifications,"
Proceedings of the Second International IEEE Conference on Tools for Artific'al Intelligence,
November, 1990, pp. 760-766.I D.E. Cooke and D. Patterson, "Towards a General Formula for Analogical Learning Leading to More
Autonomous Systems," Proceedings of SPIE." Intelligent Robots and Computer Vision IX"
Algorithms and Techniques, Vol. 1381, Ed. David Casasent, pp. 299-305 (1990).I D.E. Cooke, "Issues in CASE Technology Transfer," Proceedings of IEEE Fourth International Workshop on
Computer Aided Solfware Engineering, Irvine, California, December 1990, pp 78-79.

Daniel E. Cooke, "Methods of Program Generation for Engineering Applications," Proceedings of ASIIE
Energy-sources Technology Conference, Houston, Texas (January, 1991), pp. 15-20.

Daniel E. Cooke, Miguel Pedroza, and Ann Gates, "Interaction Of Data Structures and Primitive Operations
of Language LO," Proceedings of the Third International Conference on Software Engineering and
Knowledge Engineering, June 1991, pp. 78-83.

I C.V. Ramamoorthy and Daniel E. Cooke, "The Correspondence Between Methods of Artificial Intelligence
and the Production and Maintenance oat Evolutionary Software," Proceedings of the Third
International IEEE Conference on Tools for Artificial Intelligence, November, 1991, pp. 114-1 18.I Ann Gates and Daniel E. Cooke, "On a Fundamental Relationship Between Software Reuse and Software
Synthesis," Proceedings of Hawaii International Conference on System Sciences Vol. II, Kauia,
Hawaii (January, 1992) pp. 539-548.

Mike Pedroza and Daniel Cooke, "The Informal Semantics of BagL," PD-Vol. 43, Computer Applications and
Design Abstraction ASPE 1992, Houston, Texas (January, 1992) pp. 29-32.

John F. Kennedy and Daniel E. Cooke, "An Application of 3GL Design Principles to Explain 4GL Maintenance
Difficulties," PD-Vol. 437, Computer Applications and Design Abstraction ASME 1992, Houston,
Texas (January, 1992) pp. 129-133.

Luqi and D. Cooke, "The Management of Uncertainty in Software Development," IEEE COMIPSAC 92,
Chicago, IL, pp. 381-386.

Daniel E. Cooke, "Issues Surrounding Specification Languages For Software Automation," Proceedings of
IEEE Fifth International Workshop on Computer Aided Soft ware Engineering, July 6-10, 1992,
Montreal, Canada, pp. 120-123.

Daniel E. Cooke and Aida Gutierrez, "An Introduction to BagL," IEEE Fourth International Conference on
Software Engineering and Knowledge Engineering, Capri, Italy, pp. 479-486.

Daniel E. Cooke, "Logical Development of a Petri Net Deadlock Analysis Program," Proceedings of the
Fourth International IEEE Conference on Tools for Artificial Intelligence, November, 1992, pp.
230-233.

Daniel E. Cooke, "Arithmetic Over Multisets Leading to a High Level Language," Proceedings Computers in
I Engineering Symposium 1993, Houston, Texas (January, 1993) to appear.

Panel Papers/ Reviews
D. Cooke, T. Escamilla, and M. Gibson, "The Correspondence Between Methods of Artificial Intelligence and

the Production and Maintenance of Evolutionary Software," Proceedings of the Third International
Conference on Solfware Engineering and Knowledge Engineering, June 199 1, pp. 114- 115.

I
I



22

B. Blum, D. Cooke, X. Li, N. Minsky, and R. Semmel, "The Best Approach to Knowledge Representation for
Software Engineering," Proceedings of the Third International Conference on Software Engineering
and Knowledge Engineering, June 1991, pp. 166-167.

D. Cooke, M. Feather, S. Fickas, N. Minsky, P. Selfridge, D. Smith, and J.P. Tsai, "Is Al the Solution for
Software Engineering?." Proceedings of the Third International IEEE Conference on Tools for
Artificial Intelligence, November, 1991, pp. 10- 12.

Daniel E. Cooke, "Review of Software Conflict: Essays on the Art and Science of Software Engineering,"
International Journal on SofTware Engineering and Knowledge Engineering, Vol 1 No 4, (December,
1991) pp. 477- 478.

Valdis Berzins, Daniel E. Cooke, Luqi , Peter Ng, C.V. Ramamoorthy, Murat Tanik, Joe Urban, and Raymond
Yeh, "Workshop on Software Automation," IEEE Systems Integration Conference, Proceedings of
1992 IEEE International Conference on Systems Integration, Morristown, NJ, (June 15-19, 1992)pp. 720-722.

Educational Publications
D.E. Cooke, S.A. Starks, and D.S. Thorp, "CSAD: A Course Advisor," ASEE CoED Journal, Vol. VIII No. 4

(October-December, 1988, pp. 71-75.
D.E. Cooke, S.A. Starks, and A.F. Rodriguez, "A Methodology for Computer Assisted Learning Using Expert

Systems," ASEE CoED Journal, Vol. VIII No. 4 (October-December, 1988, pp. 38-42.
D.E. Cooke, S.A. Starks, and D.S. Thorp, "CSAD: A Course Advisor," Proceedings: Engineering Focuses

on Excellence. American Society of Engineering Education, 1987. pp. 658-663.
D.E. Cooke, S.A. Starks, and A.F. Rodriguez, "A Methodology for Computer Assisted Learning Using Expert

Systems," Proceedings: Engineering Focuses on Excellence. American Society of Engineering
Education, 1987. pp. 1481-1485.

Technical Reports
"Towards a Formalism for Program Generation," Daniel E. Cooke, for the Air Force Office of Scientific

Research, *F49620-89-C-0074, July, 1992.
"Towards a Formalism for Program Generation," Daniel E. Cooke, for the Air Force Office of Scientific

Research, *F49620-89-C-0074, July, 1991.
"Towards a Formalism for Program Generation," Daniel E. Cooke, for the Air Force Office of Scientific

Research, *F49620-89-C-0074, July, 1990.
"A Plan for a National Center of Excellence for Computer Aided Software Engineering," D.E. Cooke, for the

Naval Surface Warfare Center * N60921-89-C-A182, March, 1990.
"Effective Analogical Learning," D.W. Patterson and D.E. Cooke. NASA - JSC - Grant # NAG 9-285: 1988.
"Computer Network Design," D.E. Elizandro, D.E. Cooke, et al. State of Texas: 1986.
"Case Tracking Users Manual," D. E. Elizandro and D.E. Cooke, State of Texas: 1986.
"RADC Strategic Defense Initiative Battle Management C3 Technology Program: Technical Description

Document," States Nelson, D.E. Cooke, and S. Madaras. Rome Air Development Center for
Texts Candidate High-Payoff Tools. September, 1986.

Logic: The Basis for Understanding Prolog. ABLEX Advanced Topics in Computer Science, edited by Udo
Pooch. In Press.

The Impact of Computer Aided Software Engineering on Software Processes. World Scientific Publishers,
Ltd. Contributors: Raymond Yeh, Peter Ng, Luqi, Joseph Urban, Ron Norman, W.D. Hurley, John
Baker, Patrick Bobbie, WT Tsai, Greg Boone, Nick Bourbakis, etc. In Press.

Software Automation. Contributors: CV Ramamoorthy, Raymond Yeh, Peter Ng, Luqi, Berzins, Joseph
Urban, Murat Tanik, etc. In progress.



I
23

I SERVICE
To the Profession:
Editorships and Program Committees:

Second International Conference on Software Engineering and Knowledge Engineering (S.K. Chang.U ~.Conference Chair).
Third International Conference on Soft ware Engineering and Knowledge Engineering (S.K. Chang,

Conference Chair).
Fourth International Conference on Sot, ware Engineering and Knowledge Engineering (S.K. Chang,

Conference Chair).
Second IEEE Systems Integration Conference (Raymond Yeh and Peter Ng, Conference Co-Chair).
Third IEEE Systems Integration Conference (Raymond Yeh and Peter Ng, Conference Co-Chair).
European Joint Conference on Engineering Systems Design and Analysis (A. Ertas and T. Derbentii,

Conference Co-chair).
IEEE TAI 91 (Benjamin Wah Conference Chair).
IEEE TAI Y2 (Stephanou Conference Chair).

Associate Editor of the Journal for Software Engineering and Knowledge Engineering.
Book Review Editor of the Journal for Software Engineering and Knowledge Engineering.
Co-editor COMPUTER APPLICATIONS AND DESIGN ABSTRACTION 1992 - ASMlE.

Vice Program Chair IEEE TAI 92.
Symposium Chair ASME Computer Applications and Design Abstraction 93.
Chair of Workshop on Software Automation for Systems Integration Conference 1992.
Chair of Workshop on Software Automation for Systems Integration Conference 1993.

Reviewing Activity
Journals:

IEEE Computer, IEEE Transactions on Knowledge Engineering and Data Engineering, IEEE Software,
International Journal of Software Engineering and Knowledge Engineering, International
Journal on Systems Integration, and Journal of Systems and Software.

Conferences:
Third IEEE Systems Integration Conference
1989 Hawaii International Conference on System Sciences.
1992 Hawaii International Conference on System Sciences.
Second International Conference on Software Engineering and Knowledge Engineering.
Third International Conference on Software Engineering and Knowledge Engineering.
Fourth International Conference on Software Engineering and Knowledge Engineering.
European Joint Conference on Engineering Systems Design and Analysis.
Organized Panels for ICSEKE and IEEE Tools for Al Conference.
Local Arrangements for Regional ACM Conference in Feb. 1990.
IEEE TAI '91.
IEEE TAI '92.

To The University:
Intellectual Property Committee (1989-present)
Ph.D. proposal committee for Computer Engineering (1987-1988)
University Computer Center Director Search Committee (1991)
Dean of the College of Business Search Committee (1991)
Liberal Arts Computer Center Director Search Committee (1991)
ISIS Replacement Committee (1992-present)
Chair of Faculty Task Force for ISIS Replacement (1992-present)
Asst. Vice President for Intructional Technology Search Committee (1992)
Faculty Advisor to UPE and ACM (1987-1990)



24

Graduate Advisor (1988-present)

To The Community:
Elder of University Presbyterian Church.
Board of Directors INSIGHTS Science Museum.
Steering Committee of Paso Del Norte National Issues Forum.
Moderator for Paso Del Norte National Issues Forum.

I
I


